Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins

Home » Recent articles » Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins
04/22/2019

Fernanda Gobbi Amorim, Heloisa Tavoni Longhim, Camila Takeno Cologna, Michel Degueldre, Edwin De Pauw, Loïc Quinton, Eliane Candiani Arantes

Journal of Venomous Animals and Toxins including Tropical Diseases 2019;25:e148218
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992019000100308&lng=en&nrm=iso&tlng=en | © The Author(s). 2019
Received: July 30, 2018 | Accepted: October 8, 2018 | Published: April 18, 2019

ABSTRACT

Background

Tityus serrulatus venom (Ts venom) is a complex mixture of several compounds with biotechnological and therapeutical potentials, which highlights the importance of the identification and characterization of these components. Although a considerable number of studies have been dedicated to the characterization of this complex cocktail, there is still a limitation of knowledge concerning its venom composition. Most of Ts venom studies aim to isolate and characterize their neurotoxins, which are small, basic proteins and are eluted with high buffer concentrations on cation exchange chromatography. The first and largest fraction from carboxymethyl cellulose-52 (CMC-52) chromatography of Ts venom, named fraction I (Fr I), is a mixture of proteins of high and low molecular masses, which do not interact with the cation exchange resin, being therefore a probable source of components still unknown of this venom. Thus, the present study aimed to perform the proteome study of Fraction I from Ts venom, by high resolution mass spectrometry, and its biochemical characterization, by the determination of several enzymatic activities.

Methods

Fraction I was obtained by a cation exchange chromatography using 50 mg of crude venom. This fraction was subjected to a biochemical characterization, including determination of L-amino acid oxidase, phospholipase, hyaluronidase, proteases activities and inhibition of angiotensin converting enzyme (ACE) activity. Fraction I was submitted to reduction, alkylation and digestion processes, and the tryptic digested peptides obtained were analyzed in a Q-Exactive Orbitrap mass spectrometer. Data analysis was performed by PEAKS 8.5 software against NCBI database.

Results

Fraction I exhibits proteolytic activity and it was able to inhibit ACE activity. Its proteome analysis identified 8 different classes of venom components, among them: neurotoxins (48%), metalloproteinases (21%), hypotensive peptides (11%), cysteine-rich venom protein (9%), antimicrobial peptides (AMP), phospholipases and other enzymes (chymotrypsin and lysozymes) (3%) and phosphodiesterases (2%).

Conclusions

The combination of a proteomic and biochemical characterization strategies leads us to identify new components in the T. serrulatus scorpion venom. The proteome of venom´s fraction can provide valuable direction in the obtainment of components in their native forms in order to perform a preliminary characterization and, consequently, to promote advances in biological discoveries in toxinology.

PubMed Central https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483408/

Click here to download the PDF

KEYWORDS

Tityus serrulatus
scorpion venom
enzymes
proteases
ACE inhibitors
proteome
-->
© Copyright 2019 JVATiTD.